首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   912篇
  免费   201篇
  2021年   7篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   17篇
  2015年   22篇
  2014年   21篇
  2013年   35篇
  2012年   40篇
  2011年   30篇
  2010年   25篇
  2009年   17篇
  2008年   34篇
  2007年   41篇
  2006年   30篇
  2005年   26篇
  2004年   39篇
  2003年   33篇
  2002年   34篇
  2001年   45篇
  2000年   34篇
  1999年   23篇
  1998年   23篇
  1997年   18篇
  1996年   15篇
  1995年   21篇
  1994年   14篇
  1993年   17篇
  1992年   24篇
  1991年   35篇
  1990年   28篇
  1989年   31篇
  1988年   27篇
  1987年   20篇
  1986年   23篇
  1985年   18篇
  1984年   18篇
  1983年   8篇
  1982年   13篇
  1981年   16篇
  1980年   18篇
  1979年   17篇
  1978年   12篇
  1977年   12篇
  1974年   16篇
  1973年   10篇
  1971年   9篇
  1970年   9篇
  1969年   8篇
  1968年   8篇
排序方式: 共有1113条查询结果,搜索用时 312 毫秒
51.
Anabolic steroid effects on immune function: differences between analogues   总被引:2,自引:0,他引:2  
As an untoward effect of chronic anabolic steroid use, immunologic alterations may be induced. To evaluate this possibility five commercially available steroids with various types of structural differences were studied in male Sprague-Dawley rats. Animals were divided into five groups and treated with testosterone (Group 1), testosterone propionate (Group 2), testolactone (Group 3), oxandrolone (Group 4), and stanozolol (Group 5). Androgenic anabolic steroids were administered daily, subcutaneously dissolved in oil, at a dose of 1.1 mg/kg. Immune alterations were assessed by skin-test responses to phytohemagglutinin. After five days of treatment (1.1 mg/kg/day) a significant immuno-suppression was observed with all groups. However, by day 10, groups 3, 4, and 5 showed an immuno-stimulation. Using oxandrolone as the model stimulant, serum testosterone levels were significantly suppressed, while castration abolished the stimulatory effect. These observations indicate that immune alterations do occur with anabolic steroids which are immuno-suppressive when the steroid nucleus is intact and immuno-stimulatory with nuclear alterations. It appears that these changes are associated with altered gonadal testosterone release.  相似文献   
52.
53.
54.
Small biopsy samples are used increasingly to assess the biomarker expression for prognostic information and for monitoring therapeutic responses prior to and during neoadjuvant therapy. The issue of intratumor heterogeneity of expression of biomarkers, however, has raised questions about the validity of the assessment of biomarker expression based on limited tissue samples. We examined immunohistochemically the expression of HER-2neu (p185erbB-2), epidermal growth factor receptor (EGFR), Bcl-2, p53, and proliferating cell nuclear antigen (PCNA) in 30 breast carcinomas using archived, paraffin embedded tissue and determined the extent of intratumor heterogeneity. Each section was divided into four randomly oriented discrete regions, each containing a portion of the infiltrating carcinoma. For each tumor, the entire lesion and four regions were analyzed for the expression of these markers. Scores of both membrane and cytoplasmic staining of HER-2neu and EGFR, scores of cytoplasmic staining of Bcl-2, and scores of nuclear staining of both p53 and PCNA were recorded. The intensity of staining and the proportion of immunostained cells were determined. A semiquantitative immunoscore was calculated by determining the sum of the products of the intensity and corresponding proportion of stained tumor cells. We analyzed both invasive (IDC) and in situ (DCIS) carcinomas. The Wilcoxon signed-rank test was used for paired comparisons between overall and regional immunoscores and between overall and regional percentages of stained cells. Spearman's correlation coefficients were used to assess the level of agreement of overall biomarker expression with each of the regions. Generalized linear models were used to assess overall and pair-wise differences in the absolute values of percent changes between overall and regional expression of biomarkers. For IDCs, there were no statistically significant differences in the expression of the biomarkers in terms of either the percentage of cells staining or the immunoscores when comparing the entire tumor with each region except for the lower EGFR expression of arbitrarily selected region 1 and lower p53 expression of region 1 compared to that of the entire tumor section. For DCIS, there were no statistically significant differences in the expression of the biomarkers between the entire tumor and each region except in PCNA of region 2 compared to that of entire tumor section. Positive correlation of immunoscores was observed between the entire tumor and each region as well as across all four regions for IDC. Similar observations were noted with DCIS except for HER-2neu and PCNA. No statistically significant differences were observed in the absolute values of percent changes of biomarker expression between overall and the four regions for both DCIS and IDC. Therefore, no significant intratumor heterogeneity in the expression of HER-2neu, Bcl-2, and PCNA was observed in IDC. Minor regional variations were observed for EGFR and p53 in IDC. Similarly, no significant regional variation in the expression of markers was observed in DCIS except for PCNA.  相似文献   
55.

Introduction

Clinically evaluating genotypic interpretation systems is essential to provide optimal guidance in designing potent individualized HIV-regimens. This study aimed at investigating the ability of the latest Rega algorithm to predict virological response on a short and longer period.

Materials & Methods

9231 treatment changes episodes were extracted from an integrated patient database. The virological response after 8, 24 and 48 weeks was dichotomized to success and failure. Success was defined as a viral load below 50 copies/ml or alternatively, a 2 log decrease from the baseline viral load at 8 weeks. The predictive ability of Rega version 8 was analysed in comparison with that of previous evaluated version Rega 5 and two other algorithms (ANRS v2011.05 and Stanford HIVdb v6.0.11). A logistic model based on the genotypic susceptibility score was used to predict virological response, and additionally, confounding factors were added to the model. Performance of the models was compared using the area under the ROC curve (AUC) and a Wilcoxon signed-rank test.

Results

Per unit increase of the GSS reported by Rega 8, the odds on having a successful therapy response on week 8 increased significantly by 81% (OR = 1.81, CI = [1.76–1.86]), on week 24 by 73% (OR = 1.73, CI = [1.69–1.78]) and on week 48 by 85% (OR = 1.85, CI = [1.80–1.91]). No significant differences in AUC were found between the performance of Rega 8 and Rega 5, ANRS v2011.05 and Stanford HIVdb v6.0.11, however Rega 8 had the highest sensitivity: 76.9%, 76.5% and 77.2% on 8, 24 and 48 weeks respectively. Inclusion of additional factors increased the performance significantly.

Conclusion

Rega 8 is a significant predictor for virological response with a better sensitivity than previously, and with rules for recently approved drugs. Additional variables should be taken into account to ensure an effective regimen.  相似文献   
56.
Candidatus Portiera aleyrodidarum” is the primary endosymbiont of whiteflies. We report two complete genome sequences of this bacterium from the worldwide invasive B and Q biotypes of the whitefly Bemisia tabaci. Differences in the two genome sequences may add insights into the complex differences in the biology of both biotypes.  相似文献   
57.
Phenol is a toxic aromatic compound used or produced in many industries and as a result a common component of industrial wastewaters. Phenol containing waste streams are frequently hypersaline and therefore require halophilic microorganisms for efficient biotreatment without dilution. In this study three halophilic bacteria isolated from different saline environments and identified as Halomonas organivorans, Arhodomonas aquaeolei and Modicisalibacter tunisiensis were shown to be able to grow on phenol in hypersaline media containing 100 g/L of total salts at a concentration of 3 mM (280 mg/L), well above the concentration found in most waste streams. Genes encoding the aromatic dioxygenase enzymes catechol 1,2 dioxygenase and protocatechuate 3,4-dioxygenase were present in all strains as determined by PCR amplification using primers specific for highly conserved regions of the genes. The gene for protocatechuate 3,4-dioxygenase was cloned from the isolated H. organivorans and the translated protein was evaluated by comparative protein sequence analysis with protocatechuate 3,4-dioxygenase proteins from other microorganisms. Although the analysis revealed a wide range of sequence divergence among the protocatechuate 3,4-dioxygenase family, all of the conserved domain amino acid structures identified for this enzyme family are identical or conservatively substituted in the H. organivorans enzyme.  相似文献   
58.
Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM‐dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM‐dependent checkpoint arrest, and over‐expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM‐dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over‐express PLK1, and a significant proportion of melanomas have high levels of PLK1 over‐expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM‐dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.  相似文献   
59.
When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H+ gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF. The H+ gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes.Oxygenic photosynthesis involves the conversion of light energy into chemical bond energy by plants, green algae, and cyanobacteria and the use of that energy to fix CO2. The photosynthetic electron transport system, located in thylakoid membranes, involves several major protein complexes: PSII (water-plastoquinone oxidoreductase), cytochrome b6f (cyt b6f; plastoquinone-plastocyanin oxidoreductase), PSI (plastocyanin-ferredoxin oxidoreductase), and the ATP synthase (CFoCF1). Light energy absorbed by the photosynthetic apparatus is used to establish both linear electron flow (LEF) and cyclic electron flow (CEF), which drive the production of ATP and NADPH, the chemical products of the light reactions needed for CO2 fixation in the Calvin-Benson-Bassham (CBB) cycle.With the absorption of light energy by pigment-protein complexes associated with PSII, energy is funneled into unique chlorophyll (Chl) molecules located in the PSII reaction center (RC), where it can elicit a charge separation that generates a large enough oxidizing potential to extract electrons from water. In LEF, electrons from PSII RCs are transferred sequentially along a set of electron carriers, initially reducing the plastoquinone (PQ) pool, then the cyt b6f complex, and subsequently the lumenal electron carrier plastocyanin (PC). Light energy absorbed by PSI excites a special pair of Chl molecules (P700), causing a charge separation that generates the most negative redox potential in nature (Nelson and Yocum, 2006). The energized electron, which is replaced by electrons from PC, is sequentially transferred to ferredoxin and ferredoxin NADP+ reductase, generating reductant in the form of NADPH.Electron transport from water to NADPH in LEF is accompanied by the transport of H+ into the thylakoid lumen. For each water molecule oxidized, two H+ are released in the thylakoid lumen. In addition, H+ are moved into the lumen by the transfer of electrons through cyt b6f (Q cycle). H+ accumulation in the thylakoid lumen dramatically alters the lumenal pH, and the transmembrane H+ gradient (ΔpH) together with the transmembrane ion gradient constitute the proton motive force (pmf), which drives ATP formation by ATP synthase (Mitchell, 1961, 1966, 2011). This pmf also promotes other cellular processes, including the dissipation of excess absorbed excitation energy as heat in a photoprotective process (see below; Li et al., 2009; Erickson et al., 2015). The NADPH and ATP molecules generated by LEF and CEF fuel the synthesis of reduced carbon backbones (in the CBB cycle) used in the production of many cellular metabolites and fixed carbon storage polymers.A basic role for CEF is to increase the ATP-NADPH ratio, which can satisfy the energy requirements of the cell and augment the synthesis of ATP by LEF, which is required to sustain CO2 fixation by the CBB cycle (Allen, 2003; Kramer et al., 2004; Iwai et al., 2010; Alric, 2014). There are two distinct CEF pathways identified in plants and algae. In both pathways, electrons flow from the PQ pool through cyt b6f to reduce the oxidized form of P700 (P700+). In one CEF pathway, electrons are transferred back to the PQ pool prior to the formation of NADPH. This route involves the proteins PGR5 and PGRL1 (DalCorso et al., 2008; Tolleter et al., 2011; Hertle et al., 2013) and is termed PGR5/L1-dependent CEF. A second route for CEF includes an NADPH dehydrogenase that oxidizes NADPH (product of LEF) to NADP+, simultaneously reducing the PQ (Allen, 2003; Kramer et al., 2004; Rumeau et al., 2007). The reduced PQ pool is then oxidized by cyt b6f, causing H+ translocation into the thylakoid lumen, followed by the transfer of electrons to P700+ via PC. In the green alga Chlamydomonas reinhardtii, this second route for CEF involves a type II NADPH dehydrogenase (NDA2; Jans et al., 2008; Desplats et al., 2009).Oxygenic photosynthetic organisms have inhabited the planet for approximately 3 billion years and have developed numerous strategies to acclimate to environmental fluctuations. These acclimation processes confer flexibility to the photosynthetic machinery, allowing it to adjust to changes in conditions that impact the metabolic/energetic state of the organism and, most importantly, the formation of reactive oxygen species that may damage the photosynthetic apparatus and other cellular components (Li et al., 2009). Several ways in which the photosynthetic apparatus adjusts to environmental fluctuations have been established. A well-studied acclimation process, nonphotochemical quenching (NPQ), reduces the excitation pressure on PSII when oxidized downstream electron acceptors are not available (Eberhard et al., 2008; Li et al., 2009; Erickson et al., 2015). Several processes constitute NPQ, as follows. (1) qT, which involves the physical movement of light-harvesting complexes (LHCs) from one photosystem to another (this is also designated state transitions; Rochaix, 2014). (2) qE, which involves thermal dissipation of the excitation energy. This energy-dependent process requires an elevated ΔpH and involves an LHC-like protein, LHCSR3 (in C. reinhardtii) or PSBS (in plants), as well as the accumulation of specific xanthophylls (mainly lutein in C. reinhardtii and zeaxanthin in plants; Niyogi et al., 1997b; Li et al., 2000, 2004; Peers et al., 2009). (3) qZ, which is energy independent and involves the accumulation of zeaxanthin (Dall’Osto et al., 2005; Nilkens et al., 2010). (4) qI, which promotes quenching following physical damage to PSII core subunits (Aro et al., 1993). Additional mechanisms that can impact LEF and CEF are the synthesis and degradation of pigment molecules, changes in levels of RC and antenna complexes, and the control of electron distribution between LEF and CEF as the energetic demands of the cell change (Allen, 2003; Kramer et al., 2004). In addition, electrons can be consumed by mitochondrial and chlororespiratory activities (Bennoun, 1982; Peltier and Cournac, 2002; Johnson et al., 2014; Bailleul et al., 2015). The latter mainly involves the plastid terminal oxidase PTOX2, which catalyzes the oxidation of the PQ pool and the reduction of oxygen and H+ to form water molecules (Houille-Vernes et al., 2011; Nawrocki et al., 2015).Photosynthetic processes also must be modulated as organisms experience changes in the levels of available nutrients (Grossman and Takahashi, 2001). The macronutrient nitrogen (N), which represents 3% to 5% of the dry weight of photosynthetic organisms, is required to synthesize many biological molecules (e.g. amino acids, nucleic acids, and various metabolites) and also participates in posttranslational modifications of proteins (e.g. S-nitrosylation; Romero-Puertas et al., 2013). Importantly, N is highly abundant in chloroplasts in the form of DNA, ribosomes, Chl, and polypeptides (e.g. Rubisco and LHCs; Evans, 1989; Raven, 2013). Furthermore, there is a strong integration between N and carbon assimilation. During N limitation under photoautotrophic conditions, the inability of the organism to synthesize amino acids and other N-containing molecules necessary for cell growth and division can feed back to inhibit both carbon fixation by the CBB cycle and electron transport processes and also can negatively impact the expression of genes encoding key CBB cycle enzymes (Terashima and Evans, 1988; Huppe and Turpin, 1994; Nunes-Nesi et al., 2010).C. reinhardtii is a well-established model organism in which to study photosynthesis and acclimation processes, including acclimation to nutrient limitation (Wykoff et al., 1998; Grossman and Takahashi, 2001; Moseley et al., 2006; Grossman et al., 2009; Terauchi et al., 2010; Aksoy et al., 2013). This unicellular alga grows rapidly as a photoheterotroph (on fixed carbon in the light) or as a heterotroph (on fixed carbon in the dark), has completely sequenced nuclear, chloroplast, and mitochondrial genomes, can be used for classical genetic analyses, and is haploid, which makes some aspects of molecular manipulation (e.g. the generation of knockout mutants) easier (Merchant et al., 2007; Blaby et al., 2014). In the past few years, there have been many studies on the ways in which C. reinhardtii responds to N deprivation (Bulté and Wollman, 1992; Blaby et al., 2013; Goodenough et al., 2014; Schmollinger et al., 2014; Wei et al., 2015; Juergens et al., 2015). Cells deprived of N under photoheterotrophic conditions (i.e. acetate as an external carbon source) minimize the use of N (referred to as N sparing) and induce mechanisms associated with scavenging N from both external and internal pools, all of which eventually lead to proteome modifications and an elevated carbon-N ratio (Schmollinger et al., 2014). Acclimation under photoheterotrophic conditions also causes dramatic modifications of cellular metabolism and energetics: photosynthesis is down-regulated at multiple levels, with a portion of its N content recycled (mainly Chl and polypeptides of the photosynthetic apparatus), while there is enhanced accumulation of mitochondrial complexes leading to increased respiratory activity (Schmollinger et al., 2014; Juergens et al., 2015). Additionally, while fixed carbon cannot be used for growth in the absence of N, it may be stored as starch and triacylglycerol (Work et al., 2010; Siaut et al., 2011; Davey et al., 2014; Goodenough et al., 2014).In contrast to the acclimation of photoheterotrophically grown C. reinhardtii to N deprivation, little is known about how the photosynthetic machinery in this alga adjusts in response to N deprivation under photoautotrophic conditions, when the cells absolutely require photosynthetic energy generation for maintenance. Specifically, we sought to understand how photosynthesis adjusts to metabolic restrictions that slow down the CBB cycle, which in turn could cause the accumulation of photoreductant, particularly NADPH, as the demand for electrons declines (Peltier and Schmidt, 1991; Rumeau et al., 2007). Based on analyses of mutants and the use of spectroscopic and fluorescence measurements, we established a critical role for NDA2 in the acclimation of C. reinhardtii to N deprivation under photoautotrophic conditions, including (1) an augmented capacity for alternative routes of electron utilization (which decrease the NADPH-NADP+ ratio) based on increased NDA2-dependent CEF and chlororespiration, and (2) elevated qE, which relies on the H+ gradient generated by NDA2-dependent CEF.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号